Utah Lake Water Quality Study

Steering Committee Meeting May 26, 2021

Process Commitments

PROCESS COMMITMENTS

- Seek to learn and understand each other's perspective
- Encourage respectful, candid, and constructive discussions
- Seek to resolve differences and reach consensus
- As appropriate, discuss topics together rather than in isolation
- Make every effort to avoid surprises

Ground Rules

GROUND RULES

- Focus on the task at hand
- Have one person speaking at a time
- Allow for a balance of speaking time by providing succinct statements and questions
- Listen with respect

Ground Rules Cont.

GROUND RULES

- Be civil
- Keep side conversations to a minimum
- Turn off cell phones or put them in the non-ring mode during formal meeting sessions

PROCESS SUMMARY

- Several outside panelists joined the SC meeting to discuss HABs.
- SC members provided questions for the panelists to address.
- At the end of the meeting, most but not all SC members agreed that cell count data should be used.
- A few SC members and others joined a discussion after the meeting to further discuss the remaining concerns about cell count data.
- Panelists have also provided written answers to the questions from the SC.

CONCERNS IDENTIFIED / DISCUSSED

- Some epidemiological studies EPA relies on in guidance are based on a correlative rather than causal relationship between exposure to cyanobacteria and health effects.
- Some SC members expressed concern about basing a health advisory on correlative data.
- Others noted that epidemiological studies are always correlative; this is way EPA uses a "weight of evidence" approach.

AGREEMENTS

- Cell counts are useful measures to have, in addition to data on chlorophyll-a and biovolume. The SC and SP should use all these data types to assess progress toward management goals.
 Speciation of cell counts and toxin measurements should also be used.
- Agreeing to collect cell count data and use them to explore options in different future scenarios does not equate to agreement that there is a pre-established threshold or target that should be attained.

FUTURE DISCUSSIONS

- Future discussions on specific cell count thresholds for advisory warnings are better suited for the Utah Division of Water Quality and the Department of Health's Water Quality Health and Advisory Panel.
- Future Steering Committee scenario discussions regarding potential targets or thresholds should consider achievability for each scenario in addition to other factors identify by the Steering Committee.

UPDATE FOR STEERING COMMITTEE TECHNICAL FRAMEWORK

Utah Lake Water Quality Study Steering Committee Call

2021-05-26

GOALS

- 1. Overview of changes to the Framework document since the previous draft
 - Presentation of the connections between the Steering Committee Management Goals table and stressor-response analyses
 - Presentation of the pathway to criteria presented in the Framework
- 2. Discussion of final Framework document
- 3. Approval of framework document

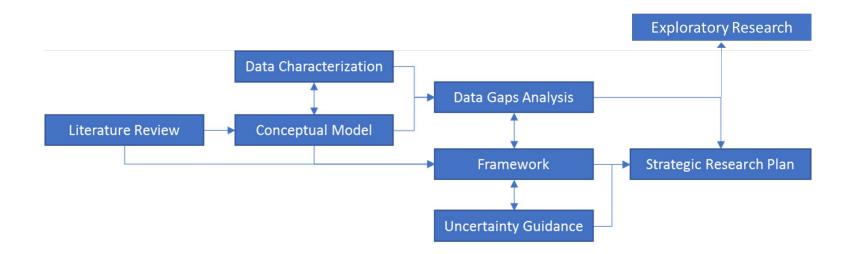
Utah Lake Water Quality Study— Numeric Nutrient Criteria Technical Framework

May 18, 2021 Version 8.2

PRESENTED TO

Utah Department of Environmental Quality Division of Water Quality PO Box 144870 Salt Lake City, UT 84114

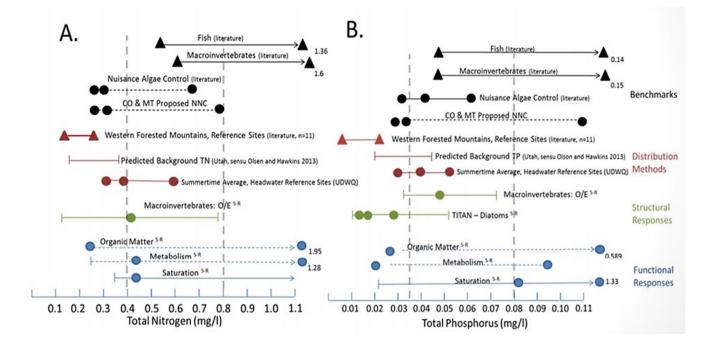
PREPARED BY

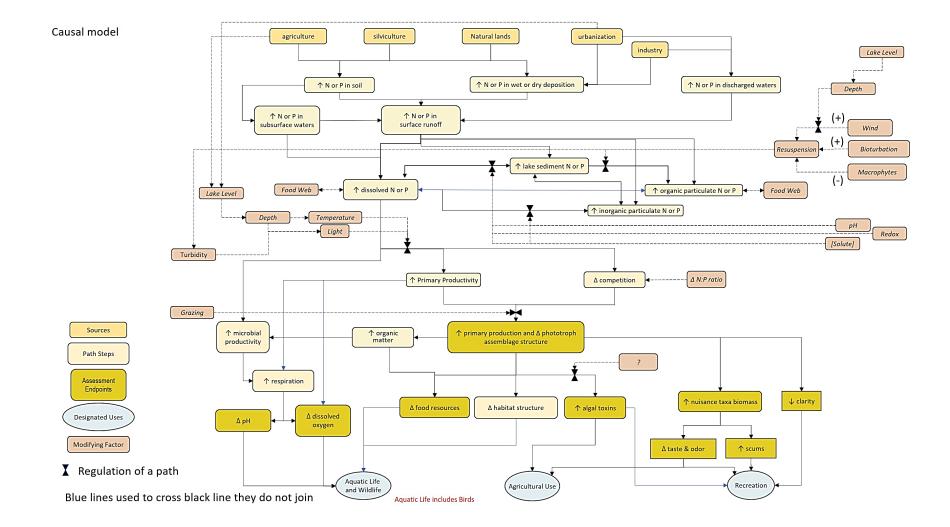

Tetra Tech Inc., Ecological Sciences 1 Park Drive, Suite 200, PO Box14409 Research Triangle Park, NC 27709

SINCE LAST FRAMEWORK DRAFT...

- Feedback from SC members, DWQ, and EPA
- Incorporated comments and text edits (see Comment-Response document)
- Added content:
 - Management Goals table
 - Pathway to Criteria section

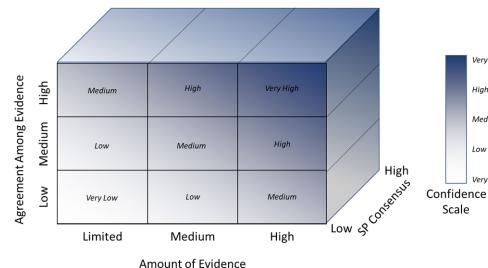
1.0 OVERVIEW

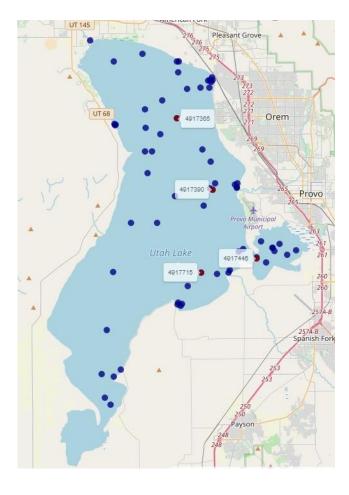

- Utah Lake beneficial use impairments
- Establishment of ULWQS
- Purpose: describe process to develop numeric nutrient criteria


1.1 LITERATURE REVIEW

Approaches for developing NNC:

- 1. Reference-based approach
- Direct observation
- Paleolimnological reconstruction
- Mechanistic modeling
- 2. Stressor-response analysis
 - Empirical modeling
 - Mechanistic modeling
- 3. Scientific Literature


1.2 CONCEPTUAL MODEL



1.3-1.5 DATA CHARACTERIZATION, **UNCERTAINTY, STRATEGIC RESEARCH PLAN**

Details work to date on:

- Empirical analyses
- Data gaps ID
- Proposed studies to fill gaps
- Uncertainty guidance

Very High

High

Medium

Verv Low

Low

2 APPROACH FOR NNC DEVELOPMENT

Incorporated SC work on Management Goals table:

2.1 Definitions:

- Management goals: statements about desired condition. Broader than designated uses
- Assessment endpoints: expressions of what is to be protected. Connect mgmt. goals to ecological causal pathway
- Measures: attributes of assessment endpoint used to assess & quantify progress
- Targets: numeric thresholds of measures

2.2 ASSESSMENT ENDPOINTS, MEASURES, TARGETS

• Divided into designated uses:

- Recreation
- Aquatic Life
- Agriculture
- Downstream
- Text updated to reflect management goals table
- Content of management goals table added as tables

Designated Use	Management Goal	Assessment Endpoint	Measures	Targets	Target source	Study/information gaps
2A. Primary contact recreation use (human health, Recreation experience, Lake aesthetics)	Harmful algal blooms (HAB) will not create toxins that threaten public health.	Algal toxin concentrations	Microcystin concentration	8 ug/L	EPA guidance WQS, R317-2-14 ¹	Frequency/duration to be incorporated from EPA guidance
			Cylindrospermopsin concentration	15 ug/L	EPA guidance WQS, R317-2-14 ²	Frequency/duration to be incorporated from EPA guidance
			Anatoxin concentration	15 ug/L	Utah HAB guidance WQS, R317-2-14 ²	
	HAB occurrence is limited in spatial extent and infrequent to support robust recreational industry and community.	Magnitude, frequency, and duration of algal blooms.	Annual number of lake closures due to HABs	 Microcystin: 2,000 ug/L Anatoxin: 90 ug/L Cylindrosprmops ip: 15 ug/L Cyanobacteria density: 10M cells/mL 	Utah HAB guidance WQS, R317-2-7.2 ²	
			Duration/frequency: Percent of recreation season with algal biomass exceeding health and nuisance thresholds at each monitoring site and	 Cyanobacteria density: TBD Toxigenic Cyanobacteria density: TBD Cyanobacteria relative abundance: TBD Toxigenic Cyanobacteria 	Recreation survey Proposed EPA NNC criteria ² R317-2-7.2 ²	Recreation survey to help determine nuisance thresholds for algal/ cyanobacteria density.

2.3 LINES OF EVIDENCE

Lays out how elements from lit review will be used to derive targets

Туре	Line of evidence	Planning to use
Reference-based	Paleolimnological reconstruction of past conditions	yes
	Model-based prediction or extrapolation of reference conditions	yes
Stressor-Response	Mechanistic model	yes
Stressor-Kesponse	Empirical	yes
Scientific Literature		yes

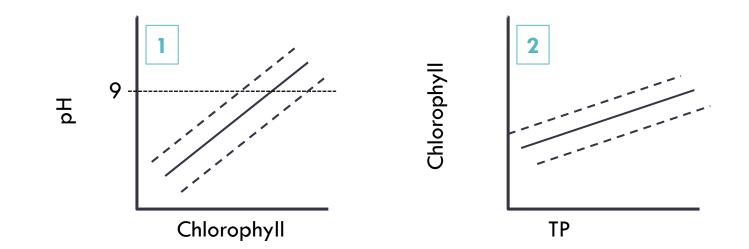
STRESSOR-RESPONSE ANALYSIS

Candidate variables selected from mgmt. goals table (align with assessment endpoints)

S-R relationships represent mechanistic connections

Can ID stressor thresholds above which target response condition is exceeded

Use	Assessment Endpoint	Stressor	Response	Empirical S-R Data Available	Mechanistic Model Output
Recreation, Aquatic Life, Agriculture, Drinking Water	Algal toxins	Chlorophyll <i>a</i>	Microcystin concentration	Yes	No
Recreation, Aquatic Life, Agriculture, Drinking Water	Algal toxins	Cyanobacterial abundance	Microcystin concentration	Yes	No
Recreation	Algal blooms	Chlorophyll a	Cyanobacterial abundance	Yes	Yes
Recreation, Aquatic Life	рН	Chlorophyll <i>a</i>	рН	Yes	Yes
Recreation	Lake visitation	Chlorophyll a	Annual visitation	Yes	No
Recreation	Lake visitation	Cyanobacterial abundance	Annual visitation	Yes	No
Recreation	Lake visitation	K _d , Secchi depth	Annual visitation	Yes	No
Recreation	Public perception	Chlorophyll <i>a</i>	Public perception	Upcoming user perception survey	No
Recreation	Public perception	Cyanobacteria abundance	Public perception	Upcoming user perception survey	No
Recreation	Public perception	K _d , Secchi depth	Public perception	Upcoming user perception survey	No
Aquatic Life	DO	Chlorophyll a	DO	Yes	Yes
Aquatic Life	Food resources	Chlorophyll a	Zooplankton:Phytoplankton	National Model	No
Aquatic Life	Food resources	Chlorophyll a	Proportion cyanobacteria	Yes	Yes
Aquatic Life	Food resources	Chlorophyll a	Macroinvertebrate diversity/abundance	No	No
Aquatic Life	Food resources	Chlorophyll a	Mollusk diversity/abundance	No	No
Aquatic Life	Light	Chlorophyll a	K _d , Secchi depth	Yes	Yes

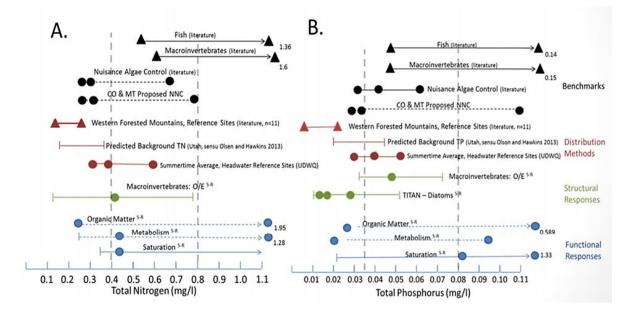

STRESSOR-RESPONSE ANALYSIS

Create S-R relationships for nutrients:

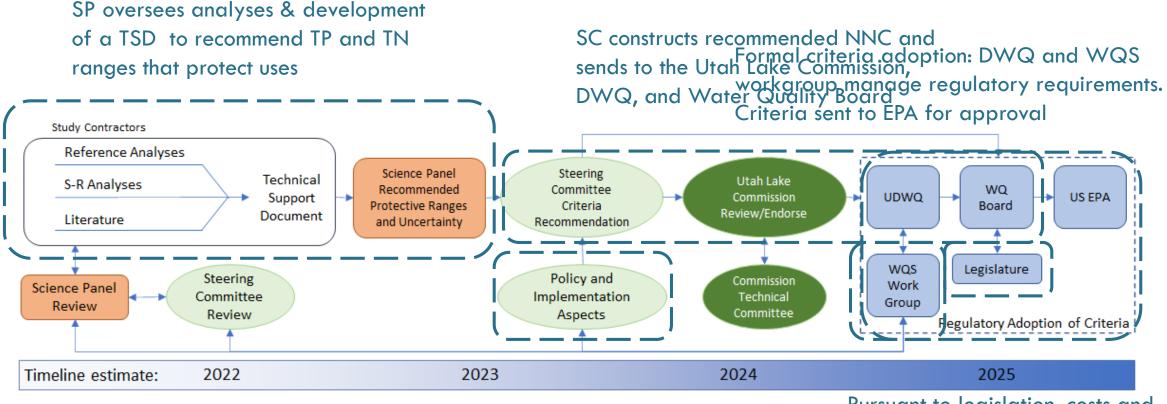
- 1. Identify stressors from S-R table \rightarrow become response
- 2. Nutrients become stressors
- 3. Thresholds from previous S-R relationship help to identify target nutrient ranges

Use	Stressor	Response	Empirical S-R Data Available	Mechanistic Model Output
Criteria Setting	TN	Chlorophyll <i>a</i>	Yes	Yes
Criteria Setting	ТР	Chlorophyll <i>a</i>	Yes	Yes
Criteria Setting	TN	Cyanobacterial abundance	Yes	Yes
Criteria Setting	ТР	Cyanobacterial abundance	Yes	Yes
Criteria Setting	TN	K _d , Secchi depth	Yes	Yes
Criteria Setting	ТР	K _d , Secchi depth	Yes	Yes

STRESSOR-RESPONSE ANALYSIS



2.3 COMBINING LINES OF EVIDENCE


Goal: link nutrient concentrations with protection of designated uses

- Interpret endpoints in the context of uncertainty
- Assessment of probability

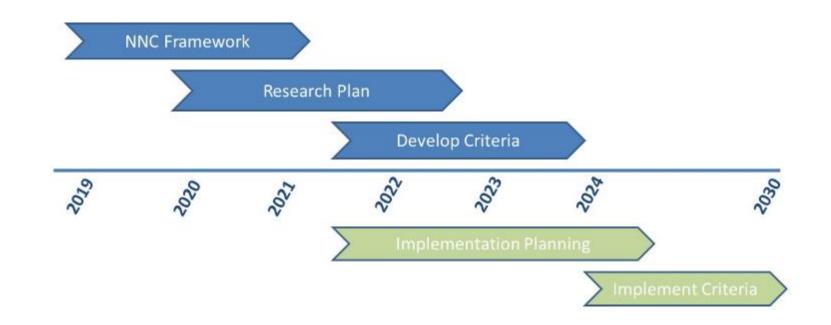
• Results in a range of values ightarrow compare across lines of evidence

3.0 PATHWAY TO CRITERIA

Adapted from ULWQS Stakeholder Process, v. 10

Pursuant to legislation, costs and Water Quality Standards consulted on legislative review requirements are an ongoing basis to ensure compliance evaluated & communicated with regulatory requirements

DISCUSSION AND QUESTIONS


Science Panel Update

STEERING COMMITTEE 5/26 MEETING

Science Panel Charge

High Level Charge Questions

- 1. What was the historical condition and how has it changed?
- 2. What is the current state with respect to nutrients and ecology?
- 3. What additional information is needed to develop nutrient criteria?
- 4. Is there an improved stable state that can be reached under current water and fishery management?

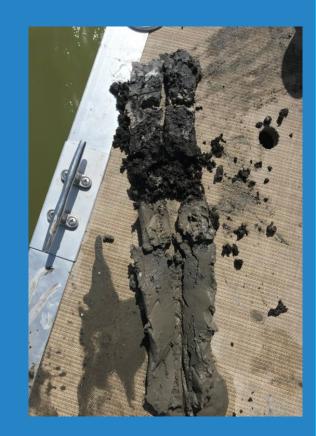
Ongoing Studies

Bioassay Study	Carbon, Nitrogen, and Phosphorus Budget Study	Phosphorus- Binding Study	Paleoecology Studies
Littoral Sediment	Utah Lake	Atmospheric	TSSD Mesocosm
Study	Watershed Model	Deposition Study	Study

Sediment-Water Nutrient Interactions

Primary investigator

Dr. Ramesh Goel, U of U and Dr. Greg Carling, BYU


What will it tell us?

- Nutrient fluxes associated with the sediments
- Inform lag time for lake recovery
- Sediment Oxygen Demand (SOD)

Progress report

Completed

Sediment-Water Nutrient Interactions Findings

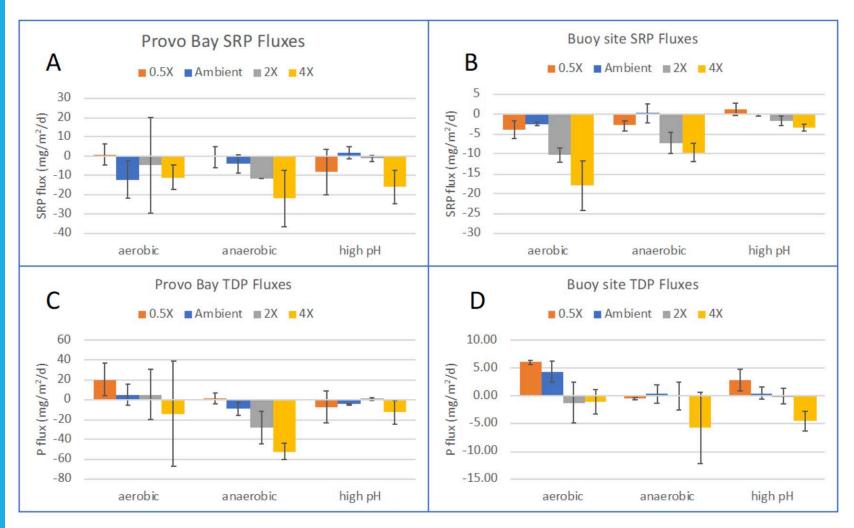


Figure 6. SRP and TDP fluxes under different conditions at two sites.

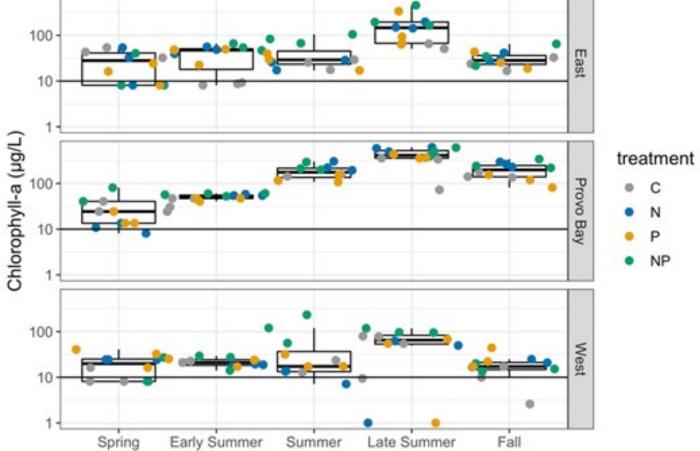
Bioassay Study

Primary investigator

Dr. Zach Aanderud, BYU

What will it tell us?

- How algal and cyanobacterial communities seasonally and spatially respond to varying levels of nitrogen and phosphorus concentrations
- Whether nitrogen, phosphorus, or both are limiting algal and cyanobacterial growth


Progress report

Final report is completed and under final review from the Science Panel

Bioassay Study Findings

Bioassay Study Findings

(cells/mL)

counts

S D

SDP

Algal

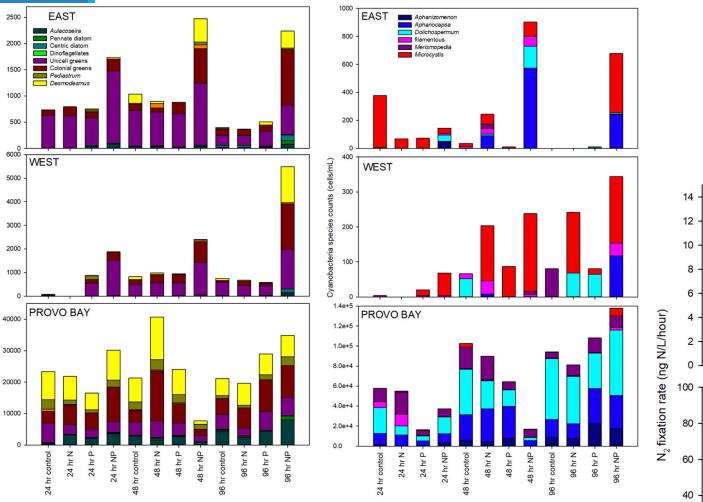
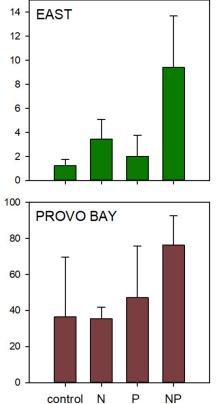



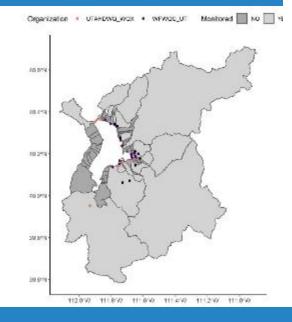
Figure 14. The abundance (cells/mL) of phytoplankton and cyanobacteria species and categories in the nutrient additions through the 96-hour time series. Values are presented as stacked bars from direct microscopy counts (n=2).

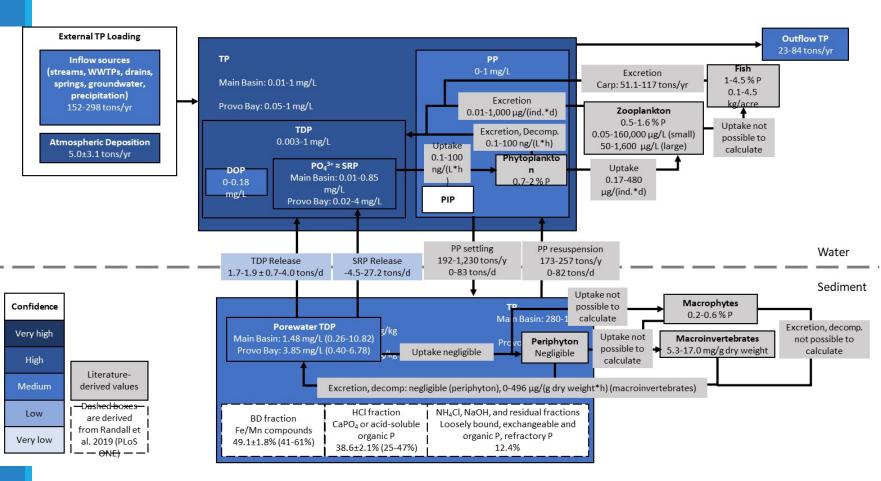
Figure 11. N₂ fixation rates in the three nutrient treatments and a control across the three lake locations in the early summer. Values are based on acetylene reduction assay (n=3).

Carbon, Nitrogen, and Phosphorus Budget Study

Primary investigator

Dr. Kateri Salk, Tetra Tech


What will it tell us?


The nutrient loads and amount of water leaving and entering Utah Lake on an annual basis

Progress report

- Kateri Salk is building the Carbon, Nitrogen, and Phosphorus Budget study model for Science Panel evaluation.
- Target completion date June 30, 2021

Carbon, Nitrogen, and Phosphorus Study Preliminary Findings

Phosphorus-Binding Study

Primary investigator

Dr. Josh LeMonte, BYU

What will it tell us?

- How phosphorus molecules interact with other molecules (e.g., calcium) once they are in Utah Lake
- How interactions between phosphorus and other molecules affect how much phosphorus is available for living organisms (e.g., algae and cyanobacteria)

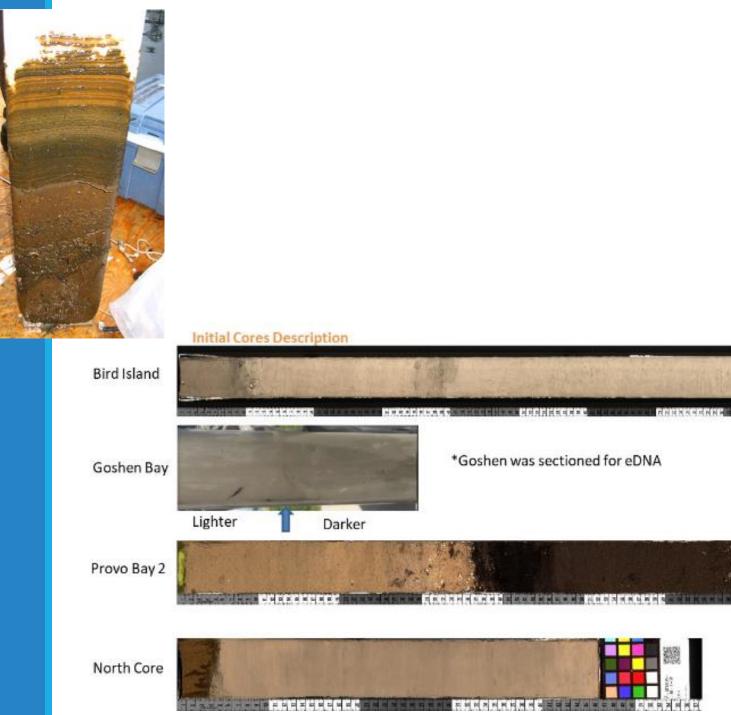
Progress report

- Josh LeMonte and his research team are conducting the literature review and developing the sampling plan to collect samples this summer.
- Target completion date March 2022

Paleoecology Studies

Primary investigator

Dr. Janice Brahney, Utah State University Dr. Soren Brothers, Utah State University


What will it tell us?

The historic conditions and nutrient concentrations of Utah Lake and how major events impacted the conditions of Utah Lake.

Progress report

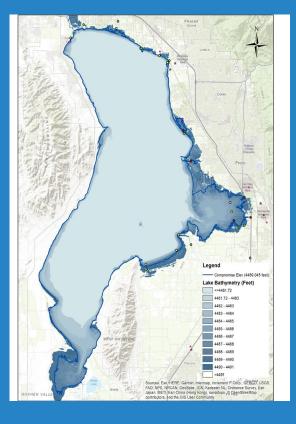
- Janice Brahney and Soren Brothers have collected the data and are in the process of analyzing it.
- Target completion date January 2022

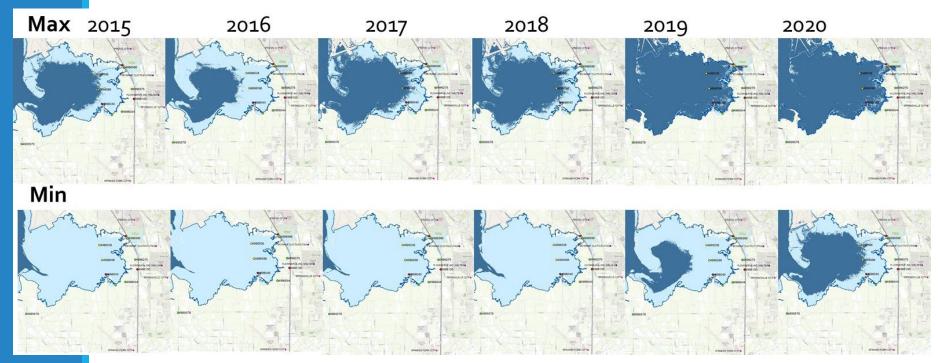
Paleoecology Studies Preliminary Findings

Littoral Sediment Study

Primary investigator

To be determined


What will it tell us?


How the wetting and drying of sediments due to changing lake levels affects nutrient cycling

Progress report

- Division of Water Quality is finalizing an agreement with the primary investigator
- Target completion date February 2022

Littoral Sediment Study

Atmospheric Deposition Study

Primary investigator

Wasatch Front Water Quality Council

What will it tell us?

Provide estimates of the wet and dry deposition to the surface of Utah Lake from the atmosphere

Progress report

Science Panel will review the results of the study soon.

Lake Mesocosms

Primary investigator

Timpanogos Special Services District (TSSD)

What will it tell us?

- Effects of carp on nutrient cycling
- Effects of carp on zooplankton and phytoplankton
- Effects of carp on macrophytes
- Effects of turbidity on primary producers
- Role of macrophytes on biogeochemistry

Progress report

TSSD researchers installed mesocosms and are developing the research plan.

Utah Lake Watershed Model

Primary investigator

To be determined

What will it tell us?

Synthesize information from all Science Panel studies to model nutrient loading and cycling in Utah Lake

Progress report

Division of Water Quality and Science Panel members are reviewing submitted proposals.

UTAH LAKE HYDRODYNAMIC (EFDC) AND WATER QUALITY (WASP) MODEL REPORT

IN SUPPORT OF EPA PROJECT NUMBER 835866-01: PREDICTION OF NONLINEAR CLIMATE VARIATIONS IMPACTS ON EUTROPHICATION AND ECOSYSTEM PROCESSES AND EVALUATION OF ADAPTATION MEASURES IN URBAN AND URBANIZING WATERSHEDS

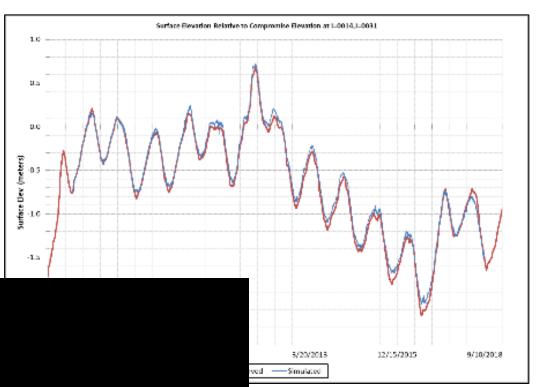
University of Utah Department of Civil and Environmental Engineering

Prepared For: Division of Water Quality Utah Department of Environmental Quality 195 North 1950 West Salt Lake City, UT 84116

Prepared By:

Utah Lake

Watershed


Model

Juhn-Yuan Su, M.S., E.I.T. (for the Utah Lake WASP Portion) Graduate Student, Ph.D. Civil and Environmental Engineering University of Utah, Salt Lake City, UT

Nicholas von Stackelberg, P.E. (for the Utah Lake EFDC Portion) Environmental Engineer Division of Water Quality Utah Department of Environmental Quality Salt Lake City, UT

Advisor: Dr. Michael E. Barber

June 30, 2020 (Revised from the April 9, 2020 Version)

Next Steps – Progress Report

Primary investigator

Science Panel

What will it tell us?

- Assess information and data available to answer Steering Committee Charge Questions
- Develop responses to each question
- Identify remaining knowledge gaps

Progress report

The Science Panel will initiate this effort at their June 10, 2021 meeting.